Birzeit University
Faculty of Engineering
Department of Electrical Engineering
Modern Communication Systems ENEE3306
Second Quiz
Date: May 3, 2020

Instructor: Dr. Wael Hashlamoun

Problem 1:

A digital communication signaling scheme employs the two signals $s_{1}(t)$ and $-s_{1}(t)$ to transmit binary digits 1 and 0 , respectively, over a channel corrupted by AWGN with zero mean and power spectral density $\mathrm{N}_{0} / 2$. Let $\mathrm{P}(1)=\mathrm{P}(0)=1 / 2$ and let $s_{1}(t)$ be defined as:

$$
s_{1}(t)=\left\{\begin{array}{cc}
A & 0 \leq t \leq T_{b} / 2 \\
-A & T_{b} / 2 \leq t \leq T_{b}
\end{array}\right.
$$

a. Sketch $\mathrm{h}((\mathrm{t})$, the impulse response of the matched filter.
b. Find the average probability of error of the optimum receiver.
c. If $s_{1}(t)$ is applied to the input of the matched filter at $\mathrm{t}=0$, find the filter output at $t=T_{b}$

Problem 2:

Consider a binary FSK modulator which transmits one of the following signals to represent digits 1 and 0 , respectively

$$
\begin{array}{ll}
s_{1}(t)=A \cos \left(2 \pi f_{1} t\right) & 0 \leq t \leq T_{b} \\
s_{2}(t)=A \cos \left(2 \pi f_{2} t\right) & 0 \leq t \leq T_{b}
\end{array}
$$

Consider also the binary PSK modulator which transmits one of the following signals to represent digits 1 and 0 , respectively

$$
\begin{aligned}
& s_{1}(t)=\mathrm{B} \cos \left(2 \pi f_{c} t\right) \quad 0 \leq t \leq T_{b} \\
& s_{2}(t)=-\mathrm{B} \cos \left(2 \pi f_{c} t\right) \quad 0 \leq t \leq T_{b}
\end{aligned}
$$

Find the relationship between A and B such that the two systems have the same probability of error.

